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ABSTRACT
Leymus cinereus (Scribn. & Merr.) Á. Löve and L. triticoides

(Buckley) Pilg. are tall caespitose and short rhizomatous perennial
Triticeae grasses, respectively. Circumference of rhizome spreading,
proportion of bolting culms, anthesis date, and plant height were eval-
uated in two mapping families derived from two interspecific hybrids of
L. cinereus Acc:636 and L. triticoides Acc:641 accessions, backcrossed
to one L. triticoides tester. Two circumference, two bolting, and two
height QTLs were homologous between families. Two circumference,
seven bolting, all five anthesis date, and five height QTLs were family
specific. Thus, substantial QTL variation was apparent within and be-
tween natural source populations of these species. Two of the four
circumference QTLs were detected in homoeologous regions of linkage
groups 3a and 3b in both families, indicating that one gene may control
much of the dramatic difference in growth habit between these species.
A major height QTL detected in both families may correspond with
dwarfing mutations on barley 2H and wheat 2A. The L. cinereus parent
contributed negative alleles for all four circumference QTLs, five of
nine bolting QTLs, two of five anthesis date QTLs, and one of seven
height QTLs. Coupling of synergistic QTL allele effects within parental
species was consistent with the divergent growth habit and plant height
of L. cinereus and L. triticoides. Conversely, antagonistic QTL alleles
evidently caused transgressive segregation in reproductive bolting and
flowering time.

LEYMUS wildryes are long-lived Triticeae grasses,
closely related to wheat (Triticum spp.) and barley

(Hordeum vulgare L.). The genus Leymus includes
about 30 species distributed throughout temperate re-
gions of Europe, Asia, and the Americas (Dewey, 1984).
More than half of all Leymus species are allotetraploids
(2n 5 4x 5 28), but octoploid (2n 5 8x 5 56) and do-
decaploid (2n5 12x5 84) variants may arise from inter-
specific hybrids (Anamthawat-Jónsson and Bödvarsdóttir,
2001) or autoduplication within species. These cool-
season grasses display remarkable variation in growth
habit and stature with unusual adaptation to harsh
polar, desert, saline, and erosion-prone environments.
Leymus triticoides (creeping or beardless wildrye) and
L. cinereus (basin wildrye) are closely related but mor-
phologically divergent North American range grasses.

Aggressive rhizomes and adaptation to poorly drained
alkaline sites, primarily within the western USA, charac-
terize sod-forming L. triticoides (0.3–0.7 m). Conversely,
L. cinereus is a tall (up to 2 m) conspicuous bunchgrass
adapted to deep well-drained soils from Saskatchewan to
British Columbia, south to California, northern Arizona,
and New Mexico, and east to South Dakota and Minne-
sota. Most populations ofL. cinereus andL. triticoides are
allotetraploids; however, octoploid forms of L. cinereus
are typical in the Pacific Northwest. Basin wildrye, and
octoploid giant wildrye [L. condensatus (J. Presl) Á.
Löve], are the largest cool-season bunch grasses native to
western North America. Artificial hybrids of L. cinereus,
L. triticoides, and otherNorthAmericanLeymuswildryes
display regular meiosis and stainable pollen (Stebbins
and Walters, 1949; Dewey, 1972; Hole et al., 1999). Both
L. cinereus andL. triticoides are highly self-sterile (Jensen
et al., 1990) and hybridize with each other in nature.
These species are naturally important forage and hay
grasses in the Great Basin and other regions of western
North America.

Growth habit is a highly variable and ecologically
important trait in perennial grasses. Aggressive rhi-
zomes characterize quackgrass [Elymus repens (L.) Desv.
ex Nevski] and johnsongrass [Sorghum bicolor (L.)
Moench], which rank among the world’s worst perennial
grass weeds (Holm et al., 1977). In general, caespitose
(i.e., growing in bunches or tufts) and rhizomatous grasses
dominate semiarid and mesic grasslands, respectively
(Sims et al., 1978). Nutrient islands beneath caespitose
grasses may also contribute to clone fitness in this growth
form in both mesic and semiarid communities, whereas
the distribution of rhizomatous grasses may be restricted
to microsites characterized by higher soil organic carbon
and nitrogen concentrations (Derner and Briske, 2001).
We have observedL. cinereus andL. triticoides growing in
close proximity in mixed stands, at several disturbed sites,
with no apparent difference in microhabitat. Conversely,
we have observed L. triticoides in riparian or wet zones
andL. cinereus inhabiting dry adjacent uplands, restricted
to seemingly different natural microhabitats. In any case,
L. cinereus and L. triticoides display profound differences
in growth habit. Lateral branches of L. cinereus grow
strictly upward, often within the lower leaf sheaths as
tillers, whereas the lateral branches of L. triticoides fre-
quently grow horizontally or downward under the soil
surface as rhizomes. In addition to obvious morphological
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differences in growth habit and stature,L. cinereus andL.
triticoides display differences in salt tolerance, seed dor-
mancy, seed color, seed shattering, mineral content, til-
lering, texture, and other characteristics.

The F1 hybrids of L. cinereus and L. triticoides are
robust and vigorous plants with relatively large biomass
potential compared to other range grasses of western
North America. Wu et al. (2003) recently constructed
high-density molecular genetic linkage maps for two
full-sib families, TTC1 and TTC2. The 164-sib TTC1 and
170-sib TTC2 families were derived from two different
L. triticoides 3 L. cinereus F1 hybrids, TC1 and TC2,
crossed to different clones of the same L. triticoides
tester genotype (T–tester). The TC1 and TC2 F1 hybrids
were derived from naturally heterogeneousL. triticoides
and L. cinereus seed accessions from Oregon and Al-
berta, respectively. Together, the TTC1 and TTC2 fam-
ilies capture a snippet of the divergence among and
heterogeneity within the L. triticoides and L. cinereus
source populations. These two experimental populations
provide unique system for gene discovery research and
development of breeding markers in perennial grasses.
A close relative of quackgrass, Leymus also provides a
useful system to study weedy traits such as rhizomes.
Our primary objective here was to identify, character-
ize, and compare QTLs controlling growth habit, plant
height, and flowering traits. Another major objective
was to compare the location of these LeymusQTLs with
genomic regions controlling related traits in other cereal
and grass species.

MATERIALS AND METHODS

Plant Materials and Genetic Maps

The full-sib TTC1 and TTC2 molecular genetic maps and
pedigrees were described by Wu et al. (2003). The 164-sib
TTC1 map included 1069 AFLP markers and 38 anchor loci in
14 linkage groups spanning 2001 cM. The 170-sib TTC2 map
contained 1002 AFLPmarkers and 36 anchor loci in 14 linkage
groups spanning 2066 cM. Some 488 homologous AFLP loci
and 24 anchor markers, detected in both families, showed sim-
ilar map order among 14 homologous linkage groups of the
TTC1 and TTC2 families (Fig. 1). The 14 homologous linkage
groups of the allotetraploid TTC1 and TTC2 families were
tentatively numbered according to the seven homoeolgous
groups of the Triticeae grasses on the basis of synteny of two
or more anchor markers from each of the seven homoeologous
groups of wheat and barley. Moreover, genome-specific STS
markers were used to distinguish the Ns and Xm marker se-
quences for homoeologous groups four and five on the basis of
similarity to Psathyrostachys juncea (Fisch.) Nevski (genome
designation Ns), which is one of the diploid ancestors of al-
lotetraploid Leymus (Wu et al., 2003). Otherwise, homoeo-
logous chromosomes of allotetraploid Leymus were arbitrarily
distinguished by the letters “a” or “b.” For example, LG3a is
allegedly homoeologous with LG3b (Fig. 1), an assertion sup-
ported by synteny among 10 of the 11 anchor markers mapped
to these linkage groups (Wu et al., 2003). Additional SSR and
STS anchor markers described in the results below were
analyzed by methods described by Wu et al. (2003). Detailed
genetic maps containing all 1583 AFLP markers mapped in
the TTC1 and/or TTC2 families are shown in Supplementary
Data files online. For essential comparisons of homology

between the Leymus TTC1 and TTC2 families and compari-
sons of homoeology with other species, we showed all anchor
makers but only those AFLP markers that were detected (ho-
mologous) in both TTC1 and TTC2 families (Fig. 1).

Field Evaluations

Ramets from each of the two mapping families (TTC1 and
TTC2) were space planted in a randomized complete block
(RCB) design with two replicates (blocks) per family at the
Utah Agriculture Experiment Station Richmond Farm (Cache
Co., UT). Each block contained one entry of each of the 164
TTC1 siblings or one clone from each of the 170 TTC2 siblings
plus the parental clones (i.e., TC1, TC2 and T) and single-plant
representatives of the heterogeneous L. cinereus Acc:636 and
L. triticoides Acc:641 accessions. Individual ramets were
transplanted from soil containers (4-cm diameter) in the
spring of 2001 to field plots with 2-meter row spacing and 2-
meter spacing within rows (2-m centers). Plants were aligned
among rows such that each plant had four equidistant (2 m)
neighboring plants. Each row contained 34 centers (one plant
per center), thus blocks were restricted to six or seven rows.
The TTC1 rep1, TTC2 rep1, TTC1 rep2, and TTC2 rep2
blocks were arranged lengthwise, respectively, along the 66-m
rows to form one continuous array comprised of 24 3 34
centers (463 66 m). Quantitative traits, described below, were
measured in 2002, 2003, and 2004.

Rhizome proliferation was measured as plant circumference
(CIRC) in late spring or early summer. For caespitose plants,
this could be simply measured by stretching a tape ruler
around the tussock at the soil surface. The circumference of
irregular sods, characteristic of the more rhizomatous plants,
was approximated as the perimeter of a polygon where the
corners represent the outermost rhizome branches (i.e., the
shortest distance around the outermost rhizomes) at the soil
surface. Anthesis date (ANTH) was measured as the number
of days from 1 January until the first day of anther extrusion,
which is most apparent on warm dry mornings, beginning mid-
June. In practice, the first day of anther extrusion was in-
terpolated between two or three observations per week. A
priori, one unexpected phenomenon in the TTC1 and TTC2
families was variation in reproductive bolting (BOLT), where
some genotypes flowered and some did not, first observed in
2002. Individual clones were retrospectively rated as 0 (not
flowered) or one (flowered), after seed harvest and mowing,
based on ANTH notes take in 2002. We subsequently rated
individual plants for the proportion of bolting culms from 0 (no
spikes produced) to 1 (virtually all major culms bolting), be-
fore seed harvests and mowing, in 2003 and 2004. Plant height
(HGHT)as measured after anthesis using a 2-m ruler. Plant
height (i.e., actual culm length from soil surface to the spike
terminal) was not measured on plants that did not flower.

Data Analysis

QTL analyses were based on trait means from two
replicants for each of the 164 TTC1 and 170 TTC2 segregates
in 2002, 2003, and 2004. QTL analyses were also performed on
averages over all 3 yr, using output from the LSMEANS pro-
cedure of SAS (Statistical Analysis Systems Institute Inc.,
Cary, NC). Coefficients of skewness and kurtosis, g1, and g2
were calculated as described by Snedecor and Cochran (1980).
Departures from normality were deemed significant if they
exceeded two standard errors of skewness (SES) and kurto-
sis (SEK) estimated by (6/N)22 and (24/N)22, respectively (Ta-
bachnick and Fidell, 1996). Histograms of phenotypic values
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(clonal averages) from 2002, 2003, and 2004 were also prepared
for CIRC, BOLT, ANTH, and HGHT (Supplementary Data).

Broad-sense heritabilities within years were obtained us-
ing a SAS program for estimating heritability from lines
evaluated in an RCB design in a single environment (Holland
et al., 2003). Likewise, heritabilities among years were ob-
tained using another SAS program for estimating heritability
from lines evaluated in RCB designs in multiple environments
(Holland et al., 2003), modified to account for repeated mea-
surements on perennial plants. All class variables (i.e., rep,
clone, year) were treated as random effects. Genotypic and
phenotypic correlations between traits evaluated using a SAS
program for estimating correlations from RCB designs in
multiple environments (Holland et al., 2003), also modified to
account for repeated measurements. The original SAS
programs for estimating heritabilities, genotypic correlations,
and phenotypic correlations (Holland et al., 2003) are
available at http://www4.ncsu.edu/|jholland/homepage_files/
Page571.htm (verified 24 July 2006).

A sequential and reiterative procedure of QTL detection
was performed using the MAPQTL five package (Van Ooijen,
2004). Genome-wide interval mapping (IM) (Lander and
Botstein, 1989; Van Ooijen, 1992) was performed in 1-cM in-
crements to identify putative QTLs and possible cofactors

used in a multiple-QTL model (MQM) (Jansen, 1993; Jansen,
1994; Jansen and Stam, 1994). Markers with the highest log-
likelihood ratios (i.e., LOD test statistics) for each QTL (no
more than one per chromosome) were selected as the initial
set of possible MQM cofactors. A backward elimination pro-
cedure was applied to this initial set of cofactors using a
conservative significance level of 0.001 to ensure the indepen-
dence of each cofactor. A reiterative process of restricted
MQM (rMQM) mapping, which excludes any syntenous co-
factors (i.e., cofactors located on the same linkage group that
is being scanned), was used to refine the location of rMQM
cofactors (QTLs) and identify new rMQM cofactors (QTLs).
Moreover conventional MQMmapping was used to detect (or
exclude) syntenous QTLs, where that possibility was apparent.
Finally, all putative QTLs were also evaluated using the non-
parametric Kruskal–Wallis rank sum test, equivalent to the
two-sided Wilcoxon rank sum test for two genotype classes
(this study), which means that no assumptions are being made
for the probability distributions of the quantitative traits
(Lehmann, 1975).

A threshold of 3.3 LOD was used throughout these QTL,
MQM, and rMQM detection procedures as a close approxi-
mation for a genome-wide 5% significance level as determined
from simulation tables based on genome size and family type

Fig. 1. Continued on next page.
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Fig. 1. Continued on next page.
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Fig. 1. Continued on next page.
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Fig. 1. Summary and comparison of plant height, growth habit, and flowering QTLs detected in the full-sib Leymus triticoides3 (L. triticoides3 L.
cinereus) TTC1 and TTC2 families based on 2002, 2003, 2004, and average measurements. The approximate location of QTLeffects (LOD 3.3),
corresponding to a genome-wide P # 0.05 signficance level, detected using a restricted multiple QTL model (rMQM) are indicated by black or
white bars for each trait 3 year. The updated molecular genetic linkage maps include 488 homologous AFLP markers and mapped in both
TTC1 and TTC2 families (Wu et al., 2003), 50 anchor markers (larger bold marker text) mapped in TTC1 and/or TTC2 families (Wu et al., 2003),
and 17 additional anchor markers (larger bold italic marker text) mapped in the TTC1 and/or TTC2 families. Annotation next to each anchor
marker indicate homoeologous groups of barley (H), wheat (ABD), cereal rye (R), and in parentheses oat chromosome designations.
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(Van Ooijen, 1999) and empirical thresholds based on permu-
tation analyses with 1000 replications (Churchill and Doerge,
1994) specific to each trait. Both methods (Van Ooijen, 1999;
Churchill and Doerge, 1994) produced remarkably similar re-
sults for all four traits evaluated in this study.

Genome-wide IM and rMQM LOD scans based on 2002,
2003, 2004, and average phenotypic values were performed for
CIRC, BOLT, ANTH, and HGHTusing MapChart version 2.1
(Voorrips, 2002) and the updated Leymus TTC1 and TTC2
genetic maps as described in the results section below. Detailed
graphs of each genome-wide LOD scan using the complete
high-density linkage maps are provided in the Supplementary
Data Online.

RESULTS
Molecular Map Update

A subset of 48 CSU or KSU wheat SSR primer pairs
described by Yu et al. (2004), the HVCABG SSR
primers described by Becker and Heun (1995), and the
HVM068 SSR primers described by Liu et al. (1996)
were tested for amplification and polymorphism among
the parental genotypes. Seven of these SSR primer pairs
(CNL45, KSU154, CNL39, HVCABG, HVN068,
KSU149, and KSU171) detected 11 loci in the Leymus
TTC1 and/or TTC2 families (Fig. 1). Likewise, another
subset of 48 published STS primer pair sequences (Mano
et al., 1999; Taylor et al., 2001; Lem and Lallemand,
2003), three sets of STS primers designed from the wheat
VRN2 (Yan et al., 2004), and one set of STS primers
designed from the BCD1117 barley cDNA clone (Heun
et al., 1991) were also tested for amplification and poly-
morphism among the parental genotypes. Seven of these
STS primer pairs (TRX1, TRX2, BCD1117, MWG2230,
VRN2, MWG2264, and ADP) detected 13 loci in the
Leymus TTC1 and/or TTC2 families (Fig. 1).
The thioredoxin h RFLPmarker,Xbm2, maps near the

self-incompatibility gene locus, S, on homeologous group
1R of Secale (Korzun et al., 2001), and thioredoxin h STS
markers have been utilized in perennial ryegrass (Taylor
et al., 2001) and Kentucky bluegrass (Patterson et al.,
2005). The thioredoxin h STS primers used by Patterson
et al. (2005) amplified two distinct sets of sequences,
designated TRX1 (AY943821 and AY943822 from L. ci-
nereus Acc:636; AY943823 and AY943824 from L. triti-
coides Acc:641) and TRX2 (AY943825-AY943827 from
L. cinereus Acc:636; AY943828-AY943830 from L. triti-
coides Acc:641). We designed TRX1 and TRX2 primers
that would amplify corresponding sequences from L. cine-
reusbut notL. triticoides—thusproviding informative poly-
morphisms for mapping in the TTC1 and TTC2 backcross
families. The TRX2 amplicons mapped to homologous po-
sitions of the LG6b linkage group, evident by the colin-
iearity with homologous TTC1 and TTC2 AFLP markers
(Fig. 1). The TRX1 primers amplified 289 bp sequences
that mapped to LG1a in TTC1 and LG2b in TTC2 (Fig. 1).
The TRX1 locus on LG1a is presumably homeologous to
the Xbm2 locus on Secale 1R. The role of thioredoxin
h genes in seed germination, self-incompatibility, grain
quality, and characteristics has been evaluated in cereals,
grasses, and other plants (Juttner et al., 2000; Langridge
et al., 1999; Li et al., 1994, 1997; Sahrawy et al., 1996).

Of special interest with regard to flowering traits, the
VRN1 and VRN2 genes are the two most potent genes
controlling differences in vernalization requirement be-
tween winter annual and spring annual barley, wheat,
and rye (Dubcovsky et al., 1998), and both of these genes
have been cloned (Yan et al., 2003, 2004). The VRN2
gene is present on homoeologous regions of 4H in winter
barleys (evidently absent in most spring barleys) and a
4A/5A translocation region of Triticum monococcum 5A
(Dubcovsky et al., 1998; Yan et al., 2004). Primers
designed from the wheat VRN2 gene amplified mixed
sequences from Leymus that were very similar in size
(supplemental data) and sequence (DQ486013) to the
wheat VRN2 gene. These putative Leymus VRN2 se-
quences map to a locus on the distal long arm of Leymus
5Ns (Fig. 1), which evidently corresponds to the VRN2
locus on Triticum monococcum 5A. Although we have
not yet mapped the Leymus VRN1 sequences, this gene
is closely associated with the CDO504 marker in other
Triticeae species and also maps to Leymus LG5Ns and
LG5Xm (Fig. 1) (Wu et al., 2003).

In summary, seven SSR primer pairs and seven STS
primer pairs (supplemental data) detected 15 additional
anchor loci in the TTC1 family and nine additional
anchor loci in the TTC2 family, not previously described
by Wu et al. (2003). The updated TTC1 map includes
1069 AFLP markers and 53 anchor loci in 14 linkage
groups spanning 2001 cM. The updated TTC2 map con-
tained 1002 AFLP markers and 45 anchor loci in 14
linkage groups spanning 2066 cM. Some 488 homolo-
gous AFLP loci and 31 anchor markers have been
mapped in both families, showing similar map order.
Thus, 1583 AFLP markers and 67 different anchor loci
have been mapped into 14 linkage groups, which evi-
dently correspond to the 14 chromosome pairs of allo-
tetraploid Leymus (2n 5 4x 5 28). The map locations
of the 17 new anchor loci (24 total including seven
homologous pairs) (Fig. 1) were largely consistent with
the other anchor loci previously mapped in Leymus (Wu
et al., 2003).

Growth Habit
The L. cinereus Acc:636 and L. triticoides Acc:641

progenitor accessions displayed very different levels
of rhizomatous spreading, which became more pro-
nounced each year (Table 1). Although CIRC measure-
ments of the TC1 and TC2 F1 hybrids were significantly
greater thanL. cinereusAcc:636, these means were well-
below the midparent, TTC1, and TTC2 averages es-
pecially in 2004 (Table 1).

Circumference of plant (rhizome) spreading showed
relatively strong broad-sense heritabilities in the TTC1
family and moderate heritabilities in the more rhizoma-
tous TTC2 family (Table 2). The CIRC trait also showed
especially strong heritabilities over years, in both TTC1
and TTC2 families; however, this is expected because
plant spreading is a cumulative trait. Not surprisingly,
the ratio of genotype3 year to phenotypic variance was
negligible (0.02) for the CIRC trait. The CIRC trait was
weakly correlated with the BOLTand ANTH flowering
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traits, in the TTC1 and/or TTC2 families, but virtually
independent from plant height in both TTC1 and TTC2
families (Table 3).
At least three significant CIRC QTLs were detected

in each family; however, not more than two QTLs were
significant in any one year and population (Table 4,
Fig. 1). The strongest, most consistent CIRC QTLs in
both TTC1 and TTC2 families were located in homolo-
gous regions of LG3a (Table 4, Fig. 1). Likewise, homolo-
gous CIRC QTLs were also detected on LG3b in both
TTC1 and TTC2 families (Fig. 1). The LG3a and LG3b
CIRC QTLs, detected in both TTC1 and TTC2 families,
are all located near homoeologous copies of VP1 gene
markers (Fig. 1). The transcription factor Viviparous-1
(encoded by the Vp1 gene) induces and maintains seed
dormancy (McCarty et al., 1991) and has been mapped
to orthologous loci in wheat, maize, and rice (Bailey et al.,
1999).Inadditiontothehomologousandpossiblyhomoeo-
logous QTLs detected on LG3a and LG3b, in both TTC1
and TTC2 families, a TTC1-specific CIRC QTL was de-
tected on LG6a and a TTC2-specific CIRC QTL was de-
tected on LG5Xm (Fig. 1). Thus, two CIRC QTLs were
common to both TTC1 and TTC2 families and two were
unique toonlyone family.TheL. cinereusalleles hadnega-
tive effects at all four (LG3a, LG3b, LG5Xm, and LG6a)
CIRC QTLs (Table 4, Fig. 1) consistent with divergent
phenotypes of the parental species.
Although significant skewness was detected in several

evaluations, all four CIRC QTLs (Table 4, Fig. 1) were

highly significant (P , 0.0001) on the basis of the non-
parametric Kruskal–Wallis rank sum test.

Flowering Traits
The BOLT and ANTH traits showed relatively strong

negative genotypic correlations in both TTC1 and TTC2
families (Table 3), evidently controlled by several common
(probably pleiotropic) QTLs (Fig. 1). Thus, data from
these two traits are presented together in one section.

The L. cinereusAcc:636 and L. triticoidesAcc:641 pro-
genitor accessions; F1 interspecific hybrids (TC1 and
TC2); and TTC1 and TTC2 families displayed similar
BOLT and ANTH phenotypic means (Table 1), except
for the fact that L. cinereus showed relatively weak bolt-
ing in the first establishment year. Leymus cinereus has a
relatively large stature, requiring several years to reach
reproductive maturity. Yet, the TTC1 and TTC2 families
displayed transgressive BOLT and ANTH segregation
that persisted through 2002, 2003, and 2004 (see trait
distributions in Supplemental Data). Unlike the F1 hy-
brids or parental source populations, some transgressive
progeny failed to flower in 2002, 2003, 2004, and 2005.

The BOLT and ANTH traits both showed relatively
weak plot-mean heritabilities over years (Table 2). The
ratio of genotype 3 year interaction to phenotypic var-
iance was substantially greater for ANTH (0.18) and
BOLT (0.21) compared with CIRC (0.02) or HGHT
(0.13), which explains the low plot-mean heritabilities

Table 1. Trait means6 SD for circumference of plant spreading (CIRC), proportion of bolting culms (BOLT), anthesis date (ANTH), and
plantheight (HGHT) for Leymus cinereusAcc:636, L. triticoides Acc:641, L. triticoides T parental genotype, interspecific TC1 and TC2
parental hybrids, and full-sib L. triticoides 3 (L. triticoides 3 L. cinereus) TTC1 and TTC2 mapping families.

Trait Year Acc:636 (n 5 18)† Acc:641 (n 5 15)† t tester (n 5 13)‡ TC1 (n 5 14)‡ TC2 (n 5 14)‡ TTC1 (n 5 164)§ TTC2 (n 5 168)§

CIRC 2002 23 6 10 354 6 186 487 6 61 96 6 35 125 6 37 180 6 91 299 6 116
2003 51 6 26 594 6 326 853 6 120 200 6 32 231 6 38 288 6 122 449 6 154
2004 76 6 21 816 6 416 1263 6 177 256 6 39 282 6 53 362 6 137 548 6 170
Avg. 57 6 23 702 6 208 653 6 112 183 6 28 212 6 40 273 6 112 430 6 144

BOLT 2002 0.28 6 0.46 0.67 6 0.48 1.00 6 0.00 0.79 6 0.43 1.00 6 0.00 0.57 6 0.43 0.73 6 0.38
2003 0.63 6 0.43 0.56 6 0.32 0.98 6 0.06 0.88 6 0.19 0.77 6 0.21 0.33 6 0.24 0.36 6 0.25
2004 0.85 6 0.33 0.78 6 0.35 1.00 6 0.00 0.84 6 0.19 0.81 6 0.23 0.55 6 0.26 0.67 6 0.27
Avg. 0.60 6 0.58 0.74 6 0.24 0.99 6 0.03 0.83 6 0.14 0.85 6 0.09 0.49 6 0.26 0.59 6 0.26

ANTH 2002 176.8 6 2.1 173.3 6 2.6 172.0 6 0.0 173.6 6 2.1 173.1 6 1.5 173.5 6 1.9 173.8 6 4.8
2003 171.1 6 5.1 169.3 6 1.4 169.0 6 0.0 169.0 6 0.0 169.0 6 0.0 172.1 6 5.7 171.3 6 4.9
2004 178.3 6 3.9 172.6 6 1.6 173.0 6 0.0 175.9 6 4.0 175.9 6 4.0 175.7 6 4.6 174.1 6 3.7
Avg. 175.9 6 2.4 172.2 6 1.1 171.3 6 0.0 172.8 6 1.3 172.6 6 1.5 174.5 6 3.5 173.4 6 4.0

HGHT 2002 99.0 6 39.8 94.5 6 12.6 100.8 6 5.7 145.8 6 15.9 141.8 6 10.6 103.9 6 13.8 109.7 6 13.0
2003 135.6 6 23.0 98.5 6 8.5 100.9 6 5.9 155.1 6 12.6 138.4 6 13.3 108.3 6 12.9 106.1 6 12.4
2004 182.9 6 18.5 123.3 6 12.7 125.7 6 3.4 184.7 6 12.3 164.6 6 8.7 134.8 6 13.8 137.8 6 11.8
Avg. 142.2 6 26.0 107.3 6 8.7 109.2 6 2.4 161.8 6 11.2 148.3 6 8.3 116.1 6 12.5 117.9 6 10.7

Measurements expressed in cm (CIRC and HGHT), proportion (BOLT), and days from January one (ANTH).
† Sample size based on individual plants.
‡ Sample size based on individual clones of each parental genotype.
§ Sample size based on means of two clones for each genotype (n).

Table 2. Estimates of broad-sense heritability (H 2)6 SE based on a plot basis and, in parentheses, genotypic mean basis for circumference
of plant spreading (CIRC), proportion of bolting culms (BOLT), anthesis date (ANTH), and plant height (HGHT) in the full-sib Leymus
triticoides 3 (L. triticoides 3 L. cinereus) TTC1 and TTC2 mapping families.

Trait Family 2002 2003 2004 Over years

CIRC TTC1 0.72 6 0.04 (0.84 6 0.03) 0.77 6 0.03 (0.87 6 0.02) 0.73 6 0.04 (0.85 6 0.02) 0.64 6 0.04 (0.91 6 0.01)
TTC2 0.54 6 0.06 (0.70 6 0.05) 0.55 6 0.06 (0.71 6 0.05) 0.57 6 0.05 (0.73 6 0.04) 0.50 6 0.05 (0.86 6 0.03)

BOLT TTC1 0.44 6 0.06 (0.61 6 0.06) 0.63 6 0.05 (0.77 6 0.04) 0.64 6 0.05 (0.77 6 0.04) 0.38 6 0.04 (0.76 6 0.04)
TTC2 0.43 6 0.06 (0.61 6 0.06) 0.64 6 0.05 (0.78 6 0.04) 0.69 6 0.04 (0.81 6 0.03) 0.41 6 0.04 (0.78 6 0.03)

ANTH TTC1 0.50 6 0.07 (0.67 6 0.07) 0.42 6 0.08 (0.59 6 0.08) 0.51 6 0.06 (0.67 6 0.06) 0.31 6 0.05 (0.71 6 0.05)
TTC2 0.73 6 0.04 (0.84 6 0.03) 0.43 6 0.08 (0.60 6 0.07) 0.46 6 0.07 (0.63 6 0.06) 0.41 6 0.04 (0.78 6 0.03)

HGHT TTC1 0.69 6 0.05 (0.81 6 0.03) 0.51 6 0.07 (0.68 6 0.06) 0.73 6 0.04 (0.84 6 0.03) 0.54 6 0.04 (0.86 6 0.02)
TTC2 0.66 6 0.05 (0.79 6 0.03) 0.53 6 0.06 (0.69 6 0.06) 0.59 6 0.05 (0.75 6 0.04) 0.48 6 0.04 (0.82 6 0.03)
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over years for the ANTH and BOLT flowering traits.
Although, BOLT and ANTH traits show significant ge-
notype 3 year interaction and the significance of QTLs
vary by year (Tables 4), several QTLs were detectable
over years (Fig. 1). One notable exception was a highly
significant TTC2 ANTH QTL on LG6a in 2002, which
was virtually nonexistent in subsequent years. Bolting
deficiencies were strongly correlated with late flowering
and weakly correlated with short caespitose character-
istics (Table 3).
A total of nine BOLT QTLs were detected in the

TTC1 and/or TTC2 families (Table 4, Fig. 1). The TTC1
and TTC2 BOLT QTL peaks on the upper portion of
LG4Xm overlap well enough (Fig. 1) that we counted
these as one homologous QTL. Likewise, we believe that

there is insufficient separation of the TTC1 and TTC2
BOLTQTLs on LG6a to declare these as different (Fig. 1).
Thus, L. cinereus contributed five negative TTC1 and/or
TTC2 BOLTQTL alleles and four positive TTC1 and/or
TTC2 BOLT QTL alleles (Table 4, Fig. 1). Two of these
nine BOLT QTLs were significant in both TTC1 and
TTC2 families (i.e., homologous), whereas seven QTLs
were unique to TTC1 or TTC2. Four QTLs explained up
to 43.9% of the BOLT variation in the 2003 TTC2 data
set, which was the most explanatory QTL model in this
study (Table 4).

A total of five significant ANTH QTLs were detected
in the TTC1 or TTC2 families (Table 4, Fig. 1). All five
significant ANTH QTLs were unique to TTC1 or TTC2
(Table 4 and Fig. 1). However, the TTC1 family displayed

Table 3. Genotypic and in parentheses phenotypic trait correlations 6 SE for circumference of plant spreading (CIRC), proportion of
bolting culms (BOLT), anthesis date (ANTH), and plant height (HGHT) in the full-sib Leymus triticoides (L. triticoides 3 L. cinereus)
TTC1 (below diagonal) and TTC2 (above diagonal) families.

CIRC BOLT ANTH HGHT

CIRC — 0.24 6 0.09 (0.13 6 0.05) 20.22 6 0.09 (20.10 6 0.05) 0.12 6 0.09 (0.02 6 0.05)
BOLT 0.22 6 0.08 (0.15 6 0.05) — 20.83 6 0.04 (20.56 6 0.03) 0.32 6 0.09 (0.36 6 0.04)
ANTH 20.33 6 0.09 (20.22 6 0.05) 20.81 6 0.06 (20.48 6 0.03) — 20.26 6 0.09 (20.32 6 0.04)
HGHT 0.01 6 0.09 (0.04 6 0.06) 0.32 6 0.09 (0.40 6 0.04) 0.07 6 0.11 (20.19 6 0.05) —

Table 4. Summary of QTL effects detected using multiple QTL model (MQM) scans of circumference of plant spreading (CIRC),
proportion of bolting culms (BOLT), anthesis date (ANTH), and plant height (HGHT) in the full-sib Leymus triticoides3 (L. cinereus3
L. triticoides) TTC1 and TTC2 backcross mapping families.

Trait Family Position (interval†) 2002 LOD (R2, effect‡) 2003 LOD (R2, effect‡) 2004 LOD (R2, effect‡) Average LOD (R2, effect‡)

CIRC TTC1 3a (125–137) NS 3.88 (10.7%, 279)§ 3.16 (9.3%, 283)§ 3.41 (10.0%, 269)¶
3b (111–112) NS 3.47 (8.5%, 273)¶ NS NS
6a (107–144) NS NS 4.08 (9.9%, 287)§ 3.33 (8.2%, 64.4)§
Overall R2 NS 16.9% 18.4% 16.4%

TTC2 3a (111–161) 4.36 (10.2%, 275)§ 5.15 (12.0%, 2107)§ 3.9 (9.0%, 2102)§ 5.44 (12.8%, 2104)§
3b (111–144) 3.56 (8.4%, 268)§ NS NS NS
5Xm (25–66) NS 3.84 (8.7%, 294)§ 4.76 (12.1%, 2121)§ 4.49 (10.4%, 296)§
Overall R2 19.7% 21.0% 20.3% 20.4%

BOLT TTC1 3a (27–80) NS NS 6.12 (13.3%, 10.19)§ 4.00 (7.6%, 10.14)¶
4Xm (11–42) 3.17 (7.4%, 20.24)§ 4.12 (10.9%, 20.16)§ 5.12 (11.4%, 20.18)§ 6.33 (13.6%, 20.19)§
6a (61–88) 3.57 (8.4%, 10.25)§ NS NS 4.01 (8.1%, 10.15)§
6b (95–117) NS NS 3.47 (9.3%, 20.16)¶ 4.11 (10.0%, 20.16)§
7b (11–15) 3.20 (7.0%, 10.24)§ NS NS NS
Overall R2 25.7% 10.9% 28.9% 35.9%

TTC2 1b (47–85) NS 5.38 (8.9%, 20.15)§ NS NS
4Ns (0–24) 3.78 (8.7%, 20.25)§ NS NS NS
4Ns (95–142) 4.36 (10.8%, 10.26)§ 4.53 (9.0%, 10.16)§ 5.65 (15.3%, 10.21)§ 5.64 (11.3%, 10.18)§
4Xm (23–41) NS 4.05 (7.2%, 20.13)§ NS 4.37 (9.2%, 20.16)§
4Xm (68–109) NS 4.61 (8.1%, 20.14)¶ NS NS
6a (80–125) NS 7.33 (15.4%, 10.20)§ NS 4.89 (12.4%, 10.18)§
Overall R2 19.9% 43.9% 15.3% 32.6%

ANTH TTC1 2a (121–139) NS NS NS 4.59 (11.4%, 12.5)§
6b (108–127) NS NS NS 4.00 (9.9%, 12.2)¶
Overall R2 NS NS NS 19.2%

TTC2 4Ns (87–124) 3.54 (7.6%, 22.7)§ 5.21 (15.9%, 24.5)§ NS 5.42 (14.7%, 23.12)§
4Xm (32–34) 3.70 (7.5%, 12.7)§ NS NS NS
6a (108–127) 5.85 (15.6%, 23.9)§ NS NS NS
Overall R2 30.9% 13.7% NS 14.7%

HGHT TTC1 2a (30–105) 7.66 (23.5%, 113.3)§ 6.74 (15.2%, 110.1)§ 10.8 (24.5%, 113.6)§ 10.36 (21.2%, 111.6)§
2b (130–164) NS NS 5.16 (10.7%, 19.0)§ 5.07 (9.6%, 17.8)§
5Ns (42–44) NS 3.44 (7.4%, 17.0)¶ NS NS
5Xm (0–11) NS NS NS 3.77 (7.0%, 26.8)e

6b (0–24) NS 3.86 (11.7% 19.1)§ NS NS
Overall R2 20.6% 31.4% 33.8% 38.8%

TTC2 2a (37–103) 8.56 (17.5%, 111.1)§ 4.20 (9.3%, 17.6)§ 3.50 (8.8%, 17.0)§ 6.40 (14.2%, 18.1)§
3a (20–34) 4.10 (8.7%, 17.74)¶ 4.15 (9.2%, 17.5)¶ NS 3.98 (7.9%, 16.0)§
3a (77–89) NS 3.42 (7.2%, 16.7)§ 4.96 (13.2%, 18.6)§ NS
5Xm (6–82) 5.64 (11.1%, 28.8)§ NS NS 4.65 (9.1%, 26.9)§
Overall R2 34.1% 28.8% 20.3% 34.5%

†Approximate positions (cM) where LOD scan exceeded 3.3 threshold as shown in Fig. 1.
‡Mean of heterozygous genotype (L. cinereus and L. triticoides alleles)– mean of homozygous genotypes (two L. triticoides alleles) expressed in centimeters
(CIRC and HGHT), proportions (BOLT), or days (ANTH).

§Cofactors selected by interval mapping (LOD . 3.3) and backward elimination (significant at the 0.001 level).
¶Additional cofactors identified by restricted multiple QTL model mapping (LOD . 3.3) and backward elimination.
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ANTH LOD values that were nearly significant on a
chromosome region homologous to the TTC2 ANTH
QTL on LG4Xm (see ANTH LOD scan in Supple-
mental Data). Similarly, both TTC1 and TTC2 displayed
nearly significant ANTH LOD values on homologous
regions of LG3b. In any case, L. cinereus contributed
three positive and two negative ANTH QTL alleles at
the five significant QTLs (Table 4, Fig. 1).
The genome-wide LOD scans were similar but not

identical for the BOLTand ANTH flowering traits (Fig. 1
and Supplemental Data). The TTC1 BOLT QTL on
LG3a had no apparent effects on ANTH. The TTC2
BOLT QTLs on LG4Ns were associated with significant
or nearly significant ANTH QTLs. Likewise, the BOLT
QTLs on LG4Xm were associated with significant or
nearly significant ANTH QTLs in the TTC1 and TTC2
families. The TTC1 ANTH QTL on LG 5Ns was as-
sociated with elevated BOLT LOD, albeit less than the
3.3 LOD threshold (Supplemental Data). Interestingly,
the TTC1 and TTC2 BOLT QTLs on LG6a were as-
sociated with significant ANTH QTLs only in the TTC2
family. The TTC1 BOLT QTL on LG6a was not as-
sociated with elevated ANTH LOD values. The latter
observation raises some doubt about the putative ho-
mology of the TTC1 and TTC2 BOLT QTLs on LG6a
(Fig. 1). Finally the TTC1 BOLT QTLs on LG6b and
LG7b were closely associated with a significant or nearly
significant ANTH QTLs, respectively.
Significant skewness and kurtosis was detected for

BOLT and ANTH; however, all QTLs (Table 4, Fig. 1)
were highly significant (P , 0.0001) on the basis of the
nonparametric Kruskal–Wallis rank sum test.

Plant Height
The L. cinereus Acc:636 plants were substantially

taller than the L. triticoides Acc:641 plants in 2003 and
2004 (Table 1). However, the L. cinereus plants require
several years to reach full-size; thus, interspecific dif-
ferences in plant height were not apparent in 2002.
Interestingly, the TC1 and TC2 F1 hybrid genotypes
displayed greater plant height than the L. cinereus Acc:
636 or L. triticoides Acc:641 reference individuals, espe-
cially in 2002 and 2003 (Table 1). The 2004 HGHTmeans
were substantially greater in 2004, which may be attrib-
utable to better rainfall (i.e., 2002 and 2003 were severe
drought years) and/or longer plant establishment.
Heritabilities over years (Table 2) for HGHT were

intermediate between CIRC and the two flowering traits
(ANTH and BOLT). Likewise, the ratio of genotype 3
year interaction to phenotypic variance for HGHT (0.13)
was intermediate between CIRC (0.02) and the flow-
ering traits, ANTH (0.18) and BOLT (0.21). Weak posi-
tive genotypic correlations between HGHT and BOLT
were detected in TTC1 and TTC2 families, but no
other trait correlations with HGHT were detected in
both families.
We detected a total of seven HGHT QTLs in the

TTC1 and/or TTC2 families (Table 4, Fig. 1). The TTC2
HGHT QTL on LG3a was split into two QTLs using a
combination of rMQM and unrestricted MQMmapping

(Table 4, Fig. 1). The single largest HGHT QTL was
located in homologous regions of LG2a in both TTC1
and TTC2 families. Likewise, overlapping TTC1 and
TTC2 HGHT QTLs on LG5Xm were too close to sepa-
rate (Fig. 1), which we count as one homologous QTL.
Moreover, LG5Xm was the only chromosome that con-
tributed negative HGHT QTL alleles from the taller L.
cinereus species, which also seems to support our inter-
pretation that these are homologous QTLs in the TTC1
and TTC2 families. Thus, L. cinereus contributed six
positive and one negative HGHT QTL alleles in the
TTC1 and/or TTC2 families, which is consistent with di-
vergent phenotypes of the parental species.

DISCUSSION
Leymus Molecular Genetic Maps

Seventeen additional anchor markers described in this
study support previous linkage group identifications, ten-
tatively numbered according to the seven homoeologous
groups of the wheat, barley, and rye Triticeae cereals
(Wu et al., 2003). Among the well-characterized Triticeae
genomes, researchers have detected one rearrangement
in Aegilops longissima Schweinf. & Muschl. (SI ge-
nome), 11 in Ae. umbellulata Zhuk. (U genome), 0 in
Ae. speltoides Tausch (S genome), seven in Secale cereale
L. cultivated ryes (R genome), and two paracentric
inversions in H. vulgare cultivated barleys (H genome)
relative to Ae. tauschii Coss., the donor of the hexaploid
wheat D genome (Devos and Gale, 2000). The A, B, and
D genomes of allohexaploid wheat are evidently colinear
except for several large reciprocal translocations involv-
ing chromosome arms 2BS and 6BS and chromosomes
4A, 5A, and 7B (Devos and Gale, 2000). One of these
rearrangements involves a reciprocal translocation be-
tween 4AL and 5AL, which includes the VRN2 gene in
T. monococcum L. (Dubcovsky et al., 1998; Yan et al.,
2004). Interestingly, the location of the VRN2 gene on
Leymus LG5Ns evidently corresponds with the location
of VRN2 in T. monococcum (Devos et al., 1995; Dub-
covsky et al., 1996). Thus, the Leymus Ns and T. mono-
coccum genomes evidently share the same 4AL/5AL
translocation arrangement. Although we detected seven
instances of marker synteny in Leymus that were not
syntenous in other Triticeae species, we have no firm
evidence of rearrangements other than the putative 4Ns/
5Ns translocation that has already been documented in
wheat. Incongruent RFLP marker locations can often
be attributed to paralogous duplications or, in the case
of PCR, priming annealing at nonhomologous loci. Al-
though there is substantial evidence of colinearity between
the LeymusNs, LeymusXm, wheat A, wheat B, wheat D,
andbarleyHgenomes,we cannot exclude the possibility of
a few yet undetected rearrangements in Leymus.

These are the first QTL analyses conducted using the
high-density linkage maps published byWu et al. (2003).
Throughout much of the linkage map, relatively small
irregularities in the LOD scans (Supplemental Data) re-
sulted from imperfect genotyping, missing data, and am-
biguous marker orders. Nevertheless, these QTL maps
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provide a useful starting point for high-resolution QTL
mapping experiments using six advanced backcross
populations that are currently being genotyped and evalu-
ated in clonally replicated field trials.

Comparison of TTC1 and TTC2 QTLs
Two circumference, two bolting, and two height QTLs

were evidently homologous in both TTC1 and TTC2
families. Conversely, two circumference, seven bolting,
all five anthesis date, and five height QTLs were unique
to TTC1 or TTC2 families. Differences between the
TTC1 and TTC2 families can be attributed to differences
between the TC1 and TC2 hybrids, which in turn can only
be attributed to genetic variation within the L. cinereus
Acc:636 and L. triticoides Acc:641 natural germplasm
sources. Thus, functionally important QTL variation was
apparent within and between natural source populations
of these experimental families and species.

Growth Habit
The coincidence of QTL effects near the VP1 loci on

LG3a and LG3b, in both TTC1 and TTC2, suggest that
these QTLs may be controlled by homoeologous copies
of the one gene. If so, this gene evidently controls much
of the dramatic difference in growth habit between L.
cinereus, L. triticoides, and perhaps other grasses. The
only other CIRC QTLs, on LG5Xm and LG6a, were
unique to the TTC1 and TTC2 families, respectively. A
preponderance of mapped barley mutations (four of six
loci) that affect vegetative axillary development have
been localized to chromosome 3HL (minus arm), in-
cluding absent lower laterals (als), low number of tillers1
(int1), and semi brachytic (usu), which produce fewer
tillers, in addition to granum-a (gra-a), which produces
significantly more tillers (Babb and Muehlbauer, 2003;
Franckowiak, 1996). A recessive gravitropic lazy dwarf
gene (lzd) was also mapped to the short arm of barley
chromosome 3 (Franckowiak, 1996; Takahashi et al.,
1975), but this mutation seems to bemore proximal to the
centromere than the Leymus LG3a and LG3b growth
habit QTLs. Chromosome 3 is highly conserved within
the Triticeae (Devos and Gale, 2000). Colinear from end
to end with rice chromosome 1, Triticeae group three is
also the most conserved of all chromosome groups when
compared with rice (La Rota and Sorrells, 2004). Rice
chromosome 1 contains putative transmembrane auxin
efflux carrier and DNAJ-like genes (International Rice
Genome Sequencing Project, 2005), near the Vp1 locus,
originally identified in Arabidopsis pin-forming (Gälwei-
ler et al., 1998) and arg1 (altered response to gravity)
(Sedbrook et al., 1999) mutants, respectively. However,
pin1- and arg1-like sequences are also present in other
regions the rice genome. Rhizome (Hu et al., 2003) and
tiller angle (Li et al., 1999) QTLs also map to rice chro-
mosome 1, but these rice loci were not located near the
rice Vp1 gene.
The TTC2 CIRC rMQM QTL on LG5Xm mapped

near the TCP-like sequence (TCP2) amplified from L.
triticoides rhizome cDNA using primers designed from
the teosinte branched one gene (Doebley et al., 1997),

BCD1130, BCD1707, and PSR128 loci. The PSR128
marker also maps in the centromere region of maize
chromosome 4 near the recessive lazy1 (la1) gene (Law-
rence et al., 2004). Lazy maize mutants, allelic to la1,
actively grow downward (prostrate) under light (Firn
et al., 2000). We found BCD1707 and BCD1130 se-
quences on rice chromosome 11, using a TBLASTX
search (Ware et al., 2002) of the rice genome (Interna-
tional Rice Genome Project, 2005), near another lazy (la)
gene (Miura et al., 2003). The centromere and short arm
regions of Triticeae group 5 are homoeologous to rice
chromosomes 9 and 12, respectively (Van Deynze et al.,
1995; La Rota and Sorrells 2004). Rice chromosome 9
contains a majorQTL (Ta) for tiller angle (Li et al., 1999).

The TTC1 CIRC QTL peak on LG6a is located ap-
proximately (minus) 40 cM from the MWG2264 locus.
Interestingly, the uniculm (cul2) mutation andMWG2264
loci are both located (minus) 8.8 and 3 cM relative to the
cMWG679 locus on barley 6H (Babb and Muehlbauer,
2003; Graner et al., 1991; Graner, 2004). Compared with
other barley mutants, uniculm2 (cul2) is unique in that it
inhibits formation of axillary meristems and does not
produce tillers (Babb and Muehlbauer, 2003).

We were not able to identify rhizome QTLs in Ley-
mus that were homeologous to rhizome QTLs of Sor-
ghum and Oryza. Paterson et al. (1995) detected about
12 rhizome QTLs including a conspicuous cluster of
QTLs affecting rhizome number, rhizome distance, and
seedling tillers on Sorghum linkage group C, which
corresponds to wheat group 4 (Draye et al., 2001). The
latter Sorghum QTL also corresponds with sucker and
stalk number QTL in Saccharum (Jordan et al., 2004), in
addition to the Rhz2 gene and 11 other QTLs con-
trolling rhizome proliferation differences between O.
sativa L. and O. longistaminata A. Chev. & Roehr. (Hu
et al., 2003). We did not detect any plant circumference
QTLs on Leymus LG 4Ns or LG4Xm, which include the
PRC140 rhizome QTL marker (Draye et al., 2001)
derived from a Sorghum LG C and sequences ortholo-
gous to the maize teosinte branched one gene (Doebley
et al., 1997). The Rhz3 gene and rhizome QTL onOryza
chromosome 4 correspond to rhizome QTLs on Sor-
ghum LG D (Hu et al., 2003) and Saccharum (Jordan
et al., 2004). This region of Oryza chromosome 4 and
Sorghum LG D evidently corresponds to Triticeae group
2 (Paterson et al., 1995; Van Deynze et al., 1995). We did
not detect any significant rhizome QTL effects on Triti-
ceae group 2.

Bolting and Anthesis Date
The genetic control of flowering time is complex,

involving three major groups of genes on all seven
Triticeae chromosome groups (Snape et al., 2001). Two
of these groups interact with the environment, namely
those controlling vernalization (Vrn) and photoperiod
(Ppd). The third set of genes controls developmental rate
independent of vernalization and photoperiod, so-called
“earliness per se” (Eps) genes. A relatively large number
ofEps genes have beenmapped to all seven homoeologous
groups of wheat and/or barley (Laurie et al., 1995; Snape
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et al., 2001), several of which may correspond to BOLT
and/or ANTH QTLs detected in Leymus.
The Vrn genes map to Triticeae groups 1, 4, 5, and 7

(Dubcovsky et al., 1998; Snape et al., 2001). Moreover,
the two most potent genes, on groups 4 and 5, have been
cloned and characterized (Yan et al., 2003; Yan et al.,
2004). Surprisingly, no significant bolting or anthesis
date QTLs were associated with the Leymus CDO504
markers on LG5Ns and LG5Xm, which are presumably
closely linked with genes that are orthologous to VRN1.
We have amplified VRN1 sequences from Leymus but
have not yet found polymorphisms needed for mapping.
Likewise, no significant bolting or anthesis date QTLs
were associated with the VRN2 gene on LG5Ns. A sec-
ond yet undetected VRN2 gene may or may not be pres-
ent on the Xm genome. The most conspicuous wheat and
barley Ppd genes are located on homoeologous regions
of the 2A, 2B, 2D, and 2H short (plus) chromosome arms.
Other Ppd genes have also been reported on barley 1H
(Laurie et al., 1995) and 6H (Strake and Börner, 1998).
We did not detect ANTH or BOLT QTLs on short (mi-
nus) arm of Leymus group two chromosomes.
The TTC1 and TTC2 families displayed substantial

genetic variation for anthesis date and bolting, including
genotypes that have not flowered in the field, which was
not apparent among the parental species accessions.
This transgressive segregation can be explained by a
mixture of antagonistic (i.e., positive and negative) QTL
alleles from each parental species. Leymus cinereus con-
tributed five positive and four negative BOLT QTLs
and three positive and two negative ANTHQTLs. Thus,
correspondence of bolting and anthesis date QTLs (and
relatively strong negative genotypic correlations) sug-
gest that outbreeding depression (i.e., transgressive ge-
notypes that to flower) was associated with flowering
(i.e., lateness) genes under balancing selection. Although
population means and standard deviations may not
demonstrate significant bolting depression, the fact that
a substantial number of progeny failed to flower year
after year indicates that some outbreeding depression
is occurring. We have not observed this phenomenon
within the L. cinereus Acc:636 or L. triticoides Acc:641
natural source populations.

Plant Height
The HGHT QTLs on LG2a displayed remarkably

strong effects and similar map locations in both TTC1
and TTC2 families, suggesting that these QTLs are ho-
mologous. The LG2a HGHT QTL was the only major
positive HGHT effect associated with chromatin of the
much taller L. cinereus species and detected in both
TTC1 and TTC2 families. We interpret these results to
mean that this is one of the key QTLs controlling rela-
tively large differences in plant height between L.
cinereus and L. triticoides. Börner et al. (1999) mapped
gibberellin-sensitive gal (GA-less) and gibberellin-
insensitive gai (GA-ins) mutations about 55 cM apart
on barley 2H. The Leymus LG2a HGHT QTL spans a
40 cM interval from the XANTHA locus down below
the CNL045 locus (Fig. 1). The XANTHA–CNL045

LG2b interval also includes the cWMG763 locus (Fig. 1),
which was mapped to the short (plus) arm of barley 2H
about 36 cm distal from the MWG2287 marker in the
barley IGRI 3 FRANKA population (Graner et al.,
1991; Graner, 2004). The MWG2287 locus is closely
linked to the barley gai mutation in the centromeric re-
gion of barley chromosome 2H (Börner et al., 1999). We
speculate that the gai (sdw3) locus, described by Börner
et al. (1999) and Gottwald et al. (2004), may correspond
with a major plant height QTL associated with the clus-
ter of DNA markers near the CNL045 locus of LG2a.
The CNL045 loci are associated with high-density clus-
ters of markers on Leymus LG2a and LG2b linkage
groups, probably caused by reduced recombination near
the centromere. Yang et al. (1995) also described a par-
tially dominant GA-ins dwarfing gene on the short arm
of chromosome 2A of wheat (Rht21), which could be
homeologous to the gai mutation mapped by Börner
et al. (1999). In any case, the barley, wheat, and Leymus
plant height genes on homeologous group two are evi-
dently different from the so-called “green revolution”
GA-ins dwarfing genes of wheat, barley, and rice encode
gibberellin response modulators that map to Triticeae
group four (Peng et al., 1999).
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Genome-wide QTL interval mapping (IM) and restricted multiple QTL model
(rMQM) mapping in the full-sib Leymus TTC1 and TTC2 families based on log of the 
odds (LOD) for circumference of plant spreading (CIRC), proportion of bolting culms 
(BOLT), anthesis date (ANTH), and plant height (HGHT) based averages over 2002, 
2003, and 2004. A threshold value of 3.3 LOD is shown for reference.
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Histograms for circumference (cm) of plant spreading in the full-sib Leymus TTC1 (n=164) 
and TTC2 (n=170) mapping families, based on means of two clones, compared to the 
heterogeneous L. cinereus Acc:636 (Lc) and L. triticoides Acc:641 (Lt) progenitors, 
interspecific hybrid parents (TC1 and TC2), and recurrent parent (T). 

0

5

10

15

20

25

30

35

40

45

50

55

60

70 140 210 280 350 420 490 560 630 700 770 840 910 980 1050 More

TTC1

TTC2

2002 ID AV (SD)
Lc 23 (10)
Lt 354 (186)
T 487 (61)
TC1 96 (35)
TC2 125 (37)
TTC1 180 (91)
TTC2 299 (116)

Lc TC1 Lt T TC2 TTC1 TTC2 

0

5

10

15

20

25

30

35

40

45

50

70 140 210 280 350 420 490 560 630 700 770 840 910 980 1050 More

TTC1

TTC2

2003 ID AV (SD)
Lc 51 (26) 
Lt 594 (326)
T 853 (120) 
TC1 200 (32) 
TC2 231 (38) 
TTC1 288 (122)  
TTC2 449 (154)

Lc TC1 Lt T TC2 TTC1 TTC2 

0

5

10

15

20

25

30

35

40

70 140 210 280 350 420 490 560 630 700 770 840 910 980 1050 More

TTC1

TTC2

2004 ID AV (SD)
Lc 76 (21) 
Lt 816 (416) 
T 1263 (177) 
TC1 256 (39) 
TC2 282 (53) 
TTC1 362 (137)  
TTC2 548 (170)  

T Lc TC1 Lt TC2 TTC1 TTC2 

R
e
p
ro
d
u
c
e
d
fr
o
m

C
ro
p
S
c
ie
n
c
e
.
P
u
b
lis
h
e
d
b
y
C
ro
p
S
c
ie
n
c
e
S
o
c
ie
ty

o
f
A
m
e
ri
c
a
.
A
ll
c
o
p
y
ri
g
h
ts

re
s
e
rv
e
d
.



Histograms for proportion of bolting culms in the full-sib Leymus TTC1 (n=164) and TTC2 
(n=170) mapping populations, based on means of two clones, compared to the 
heterogeneous L. cinereus Acc:636 (Lc) and L. triticoides Acc:641 (Lt) progenitors, 
interspecific hybrid parents (TC1 and TC2), and recurrent parent (T). 
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Histograms for anthesis date (days from January 1) in the full-sib Leymus TTC1 (n=164) 
and TTC2 (n=170) mapping populations, based on means of two clones, compared to the 
heterogeneous L. cinereus Acc:636 (Lc) and L. triticoides Acc:641 (Lt) progenitors, 
interspecific hybrid parents (TC1 and TC2), and recurrent parent (T). 
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Histograms for plant height (cm) in the full-sib Leymus TTC1 (n=164) and TTC2 (n=170) 
mapping populations, based on means of two clones, compared to the heterogeneous 
Leymus cinereus Acc:636 (Lc) and L. triticoides Acc:641 (Lt) progenitors, interspecific 
hybrid parents (TC1 and TC2), and recurrent parent (T).
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Description of additional SSR (CNL and KSU) and STS markers added to the Leymus TTC1 and TTC2 maps originally published by WU
et al. (2003)

Loci(groups) Primers Gene or motif Anchor loci
Expected
amplicon

Mapped
amplicons§

TRX1 (LG1a, LG2b) GGATAACATGACCCTAAAAACT† AY204511 thioredoxin, Xbm2, 1R 287‡ Leymus 289
GTTGTGCATCACAGGGTTATA

TRX2 (LG6B) GGATAACATGACCCTAAAAAG† AY204511 thioredoxin, Xbm2 1R 287‡ Leymus 288
TTGTTCATCACAGGGTTATC

CNL45
(LG2A, LG2B)

GAGAGAGCTTCGTCCCACTC (ga)9, putative RNA binding protein 2A 167‡ wheat 154, 161, 170, 172
CACCACTCGTTTCTTTCACTTT

KSU154 (LG4Ns) GGAGACTCTGGTCATCTCGC (cac)7 4B 146‡ wheat 137
ATACTGGAGTGAAGGCACGG

CNL39 (LG4Ns) TACCTGTGCGGCGATGAAT AF251264 (atgc)5 rubisco activase B 3A 220‡ wheat 229
CAGGAGCAGGAGAACGTGAA

BCD1117
(LG4Ns, LG4Xm)

TCAGTTCTCAATAGAAGTGCTGTG BCD117 barley cDNA clone 4HD 209 152, 211
TCCTGAATAAGGTCTTCATACCAA

HVCABG (LG4Ns) ACACCTTCCCAGGACAATCC Rubisco (AT)29 4H 182 barley 152
CAGAGCACCGAAAAAGTCTGTA

HVM068 (LG4Xm) AGGACCGGATGTTCATAACG (GA)22 4H 204 barley 199
CAAATCTTCCAGCGAGGCT

KSU149 (LG4Xm) GAGCCACCAGAGCAGAAATC (acc)9 4D 228‡ wheat 240, 243
CGAGCTCCCCTTCTTCTTCT

KSU171 (LG5Ns) TCTTGCTTGCATTGTAACCG (agt)7 5B 243‡ wheat 279
TCATGTCTGGGAGCATGGTA

MWG2230 (LG5Ns) AATGATGTTGCTTTCCTGTTTGCTC MWG2230 barley genomic DNA 5H 320 barley 285
ACAGATGATGATGGCGTGCAGCTTT

VRN2 (LG5Ns) AGTACCAGTTCTTCRCCCAAGG Wheat vrn2 (AY485644) 4H, 4A/5A 203 wheat 193,199
CTGCASYAGGTGAGCCAT

MWG2264 (LG6a) AGGTAGAAGTCAAACTGTGTGGGAT MWG2264 barley genomic DNA 6H 400-450 403
GTATTACTTTACGAGTTAGATGCTA

ADP (LG7a) CCTCCGTGAACAATTTCCTG M31616 ADP glucose phosphorylase 5ABD 1003‡ rice 350 TaqI
TCCAATACGAGCATTCTTGT 190 TaqI

†FAM 5’ labeled primer.
‡Amplicon size based on sequence data.
§Amplicon size based on comparisons with internal size standards in capillary electrophoresis.
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